Will Repeated Reading Benefit Natural Language Understanding?

نویسندگان

  • Lei Sha
  • Feng Qian
  • Zhifang Sui
چکیده

Repeated Reading (re-read), which means to read a sentence twice to get a better understanding, has been applied to machine reading tasks. But there have not been rigorous evaluations showing its exact contribution to natural language processing. In this paper, we design four tasks, each representing a different class of NLP tasks: (1) part-of-speech tagging, (2) sentiment analysis, (3) semantic relation classification, (4) event extraction. We take a bidirectional LSTM-RNN architecture as standard model for these tasks. Based on the standard model, we add repeated reading mechanism to make the model better “understand” the current sentence by reading itself twice. We compare three different repeated reading architectures: (1) Multi-level attention (2) Deep BiLSTM (3) Multi-pass BiLSTM, enforcing apples-to-apples comparison as much as possible. Our goal is to understand better in what situation repeated reading mechanism can help NLP task, and which of the three repeated reading architectures is more appropriate to repeated reading. We find that repeated reading mechanism do improve performance on some tasks (sentiment analysis, semantic relation classification, event extraction) but not on others (POS tagging). We discuss how these differences may be caused in each of the tasks. Then we give some suggestions for researchers to follow when choosing whether to use repeated model and which repeated model to use when faced with a new task. Our results thus shed light on the usage of repeated reading in NLP tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Annotated Corpus for Machine Reading of Instructions in Wet Lab Protocols

We describe an effort to annotate a corpus of natural language instructions consisting of 662 wet lab protocols to facilitate automatic or semi-automatic conversion of protocols into a machine-readable format and benefit biological research. Experimental results demonstrate the utility of our corpus for developing machine learning approaches to shallow semantic parsing of instructional texts. W...

متن کامل

Dynamic syntax - the flow of language understanding

Introducing a new hobby for other people may inspire them to join with you. Reading, as one of mutual hobby, is considered as the very easy hobby to do. But, many people are not interested in this hobby. Why? Boring is the reason of why. However, this feel actually can deal with the book and time of you reading. Yeah, one that we will refer to break the boredom in reading is choosing dynamic sy...

متن کامل

Beyond Automated Essay Scoring

The ability to communicate in natural language has long been considered a defining characteristic of human intelligence. Furthermore, we hold our ability to express ideas in writing as a pinnacle of this uniquely human language facility—it defies formulaic or algorithmic specification. So it comes as no surprise that attempts to devise computer programs that evaluate writing are often met with ...

متن کامل

The debate on automated essay grading - Intelligent Systems, IEEE [see also IEEE Expert]

The ability to communicate in natural language has long been considered a defining characteristic of human intelligence. Furthermore, we hold our ability to express ideas in writing as a pinnacle of this uniquely human language facility—it defies formulaic or algorithmic specification. So it comes as no surprise that attempts to devise computer programs that evaluate writing are often met with ...

متن کامل

Recognizing Textual Entailment

Since 2005, researchers have worked on a broad task called Recognizing Textual Entailment (RTE), which is designed to focus efforts on general textual inference capabilities, but without constraining participants to use a specific representation or reasoning approach. There have been promising developments in this sub-field of Natural Language Processing (NLP), with systems showing steady impro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017